
ALGORITHMIC FOUNDATIONS OF THE NESTED
SAMPLING ALGORITHM

Peter Hoffman1

1Undergraduate, Department of Mathematics, Massachusetts Institute of Technology

Abstract

The nested sampling (NS) algorithm is an iterative method used to compute
the marginal likelihood in Bayesian inference. It is well suited to complex and
high-dimensional likelihoods, and is generally efficient even in instances where
traditional numerical methods struggle. We provide a literature overview on
both the theoretical and practical aspects of the NS algorithm relevant to math-
ematical statisticians and practitioners alike.

Keywords: Nested sampling algorithm, Bayesian inference, Marginal likeli-
hood approximation, Markov chain Monte Carlo methods

1 INTRODUCTION

In Bayesian inference, the nested sampling (NS) algorithm is used to approximate
the marginal likelihood over a parameter space. While this marginal likelihood has
an explicit formula for carefully chosen priors, the same is often not true for general
priors, necessitating approximation methods such as the NS algorithm.

First, recall the standard context of Bayesian inference. Suppose we have the para-
metric model {Pθ | θ ∈ Θ} for data d ∈ D. We interpret the parameter θ ∈ Θ as
a random variable with density function π : Θ → R≥0, where π(θ) is known as the
prior, and conceptually, it encapsulates all known information on the true θ. After
observing data d, we form the likelihood of θ given d, denoted L(θ) = L(θ | d).

Next, recall that in Bayesian inference we update the distribution of θ after observing
d using Bayes Law. In particular, we form the posterior π(θ | d) : Θ ×D → R≥0

such that

π(θ | d) = π(θ)L(θ)
Z

,

where Z ∈ R is a normalizing constant called the marginal density of d, chosen so
that

∫
Θ π(θ | d) = 1. We work in the case where Θ, π(θ), and L(θ) are continuous,

so that π(θ | d) is continuous too. In this case,

Z =

∫
Θ
π(θ)L(θ) dθ,

which we use the NS algorithm to approximate.

1

While Z often has a known closed form prior to observing d for carefully chosen pri-
ors, it is often difficult to calculate directly. In particular, posteriors that exhibit non-
convex contours, high dimensionality, and multiple peaks pose unique challenges to
direct integration techniques (4).

The NS algorithm succeeds at estimating Z in these cases, making it an important
contribution to Bayesian inference. While there exist alternative methods to compute
the marginal likelihood, including Markov chain Monte Carlo methods, the NS algo-
rithm is especially well-suited to high dimensional and complex parameter spaces.

To approximate Z, the NS algorithm, defined in Section 2, transforms Z – an integral
over a high-dimensional parameter space Θ – into an integral in one dimension that
the NS algorithm approximates as a summation. This approximation step exhibits
parallels with Lebesgue integration, namely how the algorithm sums “shells” of prior
mass weighted by their likelihood.

It’s worth noting that the NS algorithm is no more than a sophisticated computational
integration method that applies to integrals of the form of Z, in part due to its reliance
on properties of π(θ) and L(θ).

With regards to assumptions, the NS algorithm does not require the previously stated
assumptions on continuity of Θ, π, and L(θ), but these assumptions make the NS
algorithm more relevant since more efficient methods exist in the discrete case.

Instead, the algorithm relies on several “black box” assumptions that will be dis-
cussed as the algorithm is presented. For example, one such assumptions is that
constrained sampling over the prior is both tractible and efficient. The original pa-
per by Skilling 2006 (2) merely introduces the NS algorithm theory, opting to leave
many of the algorithmic and implementation problems to be solved in subsequent
work. We generally do the same, yet take care to note where such assumptions exist.
However, it’s worth noting that many papers since 2006 have provided the algorithms
the original assumptions rely on in these black box claims.

We first introduce the algorithm in Section 2, first through a high level and intuitive
approach in Subsection 2.1, then through a more formal statistical framework in Sub-
sections 2.2 and 2.3, after which the full algorithm is given in Subsection 2.4. We
then give an example of the NS algorithm in action in Section 3, and lastly describe
properties of the algorithm in Section 4, specifically the practicalities of sampling
from the prior space in Subsection 4.1 and the error term distribution in Subsection
4.2.

2 THE ALGORITHM

2.1 Conceptual overview

We initially present the algorithm in a high-level and intuitive way, leaving the formal
mathematical arguments to Subsection 2.2. As in Section 1, let π(θ) be a continuous
prior.

Now for a second assumption: assume π(θ) : Θ → R to be uniform over parameter

2

space Θ. This assumption, while not required for the NS algorithm, will help build
intuition before considering more general cases.

Now consider the integral V =
∫
Θ π(θ)dθ. Intuitively, dθ is some small hyper-

volume, and π is a density over Θ. Therefore π(θ)dθ is a mass, which is proportional
to volume from the assumption that π is uniform over the parameter space.

Along the same line of reasoning, the integral

Z =

∫
Θ
L(θ)π(θ)dθ,

can be understood as a small volume π(θ)dθ weighted by its associated likelihood
L(θ). This is a fundamental intuition of the NS algorithm as will be utilized below.

We now present a high level overview of the NS algorithm used to approximate the
marginal likelihood Z over a k-dimensional continuous parameter space Θ: (4)

1. Initialization: Uniformly at random selectN “live” points from the parameter
space θ1, . . . , θN ∈ Θ.

2. Iteration: For j = 1, . . . ,m:

(a). Compute the likelihood L(θi) at each of the N live points i = 1, . . . , N .
Next, find the point θ(j) with the lowest likelihood:

θ(j) = arg min
i=1,...,N

L(θi).

Drop θ(j) from the list of live points, and θ(j) is henceforth known as the
jth dead point.

(b). Likelihood-restricted prior sampling (LRPS): Uniformly at random
select a new point θ ∈ Θ with the condition that the corresponding likeli-
hood exceeds the likelihood of the jth dead point: L(θ) ≥ L(θ(j)). This
involves constrained sampling over Θ.

(c). Replacement: Once such a point θ has been found, add θ to the set of
N − 1 live points to once again have N live points. At each iteration,
the algorithm produces a single dead point, then finds a new live point to
replace it, thus always maintaining N live points.

3. At each iteration, the likelihood threshold increases since we are constantly dis-
carding the point with the lowest likelihood. Additionally, the volume defined
by the points decreases by a constant factor: after j iterations of shrinkage and
restricted prior sampling, the remaining volume

Vj ≈ (1− 1

N
)j

is reduced by

∆Vj = Vj − Vj−1 ≈ (1− 1

N
)j × 1

N
.

3

4. Termination: For m sufficiently large, the volume change at the mth iteration
∆Vm is sufficiently small, and the likelihood threshold Lj sufficiently high
such that constrained sampling is difficult. The algorithm has converged.

5. Summation: Removing a live point can be understood as “peeling” off a shell
of the previous step’s volume Vj−1. It then follows that the “level height”
for this shell’s contribution is the the likelihood of the dead point, L(θ(j). It
follows that Z ≈

∑m
j=1 VjL(θ(j). (4)

Figure 1. (4) Clockwise from top left: a k = 2 dimensional likelihood function,
Θ ⊆ R2 with properties that conventionally make Z difficult to calculate. The NS
algorithm is initialized with N = 5 live points, with the red mark denoting the first
dead point, replaced with the blue dot. After 29 iterations the points have concen-
trated around areas of high likelihood.

Figure 1 demonstrates steps 1-5 on a k = 2 dimensional likelihood function. Each
white circle is a live point. At each iteration a dead point (denoted as a cross) is
produced, and replaced by a live point (denoted by the blue circle. After 29 iterations
the points have concentrated around areas of high likelihood. Importantly, the lower
graph shows the associated approximation of Z ≈

∑
j VjL(θ(j).

We now note two important aspects of the NS algorithm.

The NS algorithm gets it’s name from how these ∆Vj correspond to “nested” shells
of prior volume. By summing these shells of volume weighted by their correspond-
ing likelihood, we approximate Z. In particular, this technique resembles Lebesgue
integration, in which the range of the integrand is partitioned into disjoint intervals
(using dead points in the case of the NS algorithm), so that the region under the
multi-dimensional graph is partitioned into shells. This is demonstrated in Figure 2.

Secondly, the uniformity of π(θ) facilitated the analogy using volume as opposed
to mass, to which π(θ)dθ would otherwise correspond. Additionally, the uniformity

4

allowed us to sample directly from Θ as opposed to the prior. We will handle these
more general cases in subsequent sections.

Figure 2. Lebesgue integration in 1D, in which the function is partitioned into hori-
zontal shells that are summed individually.

2.2 Formal definition

We now present the formal definition of the NS algorithm. Using the same continuity
assumptions in Subsection 2.1, for a Θ ∈ Rk we seek

Z =

∫
. . .

∫
L(θ)π(θ)dθ1 . . . dθk.

First define the survival function X(l) : {0, 1} → {0, 1},

X(l) = P{L(θ) > l}

therefore
X(l) =

∫
θ: L(θ)>l

π(θ)dθ1 . . . dθd (1)

where L(θ) > l denotes the region(s) (possibly disjoint) of parameter space Θ con-
tained within the contour defined by L(θ) = l. We can interpret this integral as all
prior mass over a given likelihood threshold l.

Next, let L(X) denote the inverse of X(l), so that L(X(l)) = l. Since X is a
survival function, it follows that L(X) is a tail quantile function of random variable
L(θ). Recall that for a tail quantile function

EΘ[L(θ)] =
∫ 1

0
L(X) dX.

Next, notice that Z in equation 1 takes the form of an expected value! Namely a ran-
dom variable L(θ) weighted by it’s density π(θ) over a parameter space Θ. Therefore
it follows that Z = EΘ[L(θ)], so

Z =

∫ 1

0
L(X) dX. (2)

∑
s−i∈S−i

π(s−i, ri)
[
pi(s−i, ri)− pi(s−i, ti)

]
≥ 0

5

This accomplishes our goal of transforming Equation 1 into a 1-dimensional integral
we can approximate as a summation. Figure 3 illustrates Equation 2. Note that that
L(X) is a strictly decreasing function of X .

Figure 3. Likelihood function with area Z. (1)

Let us also provide some intuition around equation 2. We’ve essentially performed a
change of variables from dθ to dX = π(θ)dθ, where the former is a hyper-volume,
and the latter is a small bit of mass. Despite the usefulness of this transformation
from k− dimensions to 1−dimension, we shouldn’t expect to know L(X), hence the
approximation step that follows.

2.3 The approximation

We approximation Z in Equation 2 as follows. First assume there exists strictly
decreasing sequence of m evaluations of the function X:

1 > X1 > . . . > Xm > 0

such that we had a way to calculate L(Xj). Then we could approximate this one
dimensional integral for Z in Equation 2 by using dX ∼ (Xj−1 −Xj) and

Ẑ =

m∑
j=1

L(Xj)(Xj−1 −Xj), (3)

(8) (5). Figure 4 demonstrates this approximation using right and left Riemann sums.

2.4 The NS algorithm

It should be clear that we do not currently posses the machinery necessary to compute
Equation 3. Namely, we do not know the function L(X) for any sequence of Xj

Stepping back, we have so far used L(Xj) and L(θj) separately. However, using our
previous observation that dX = π(θ)dθ, then L(Xj) is simply the transformation of

6

Figure 4. A lower (resp. upper) bound approximation of Z using right (resp. left)
Riemann sums. (1)

L(θj) to be a function of Xj as opposed to θj . The NS algorithm uses this fact to
generate a sequence

1 > X1 > . . . > Xm > 0

such that we can sample L(θj) instead of computing it directly. In doing so, we only
need to ensure that Xj and L(θj) are drawn from the same same distribution, which
will be the largest and smallest among N uniform random variables, respectively.

To this end, let X0 = 1 and let Xj = tjXj−1 where tj is the largest among N
numbers drawn from Uniform(0, 1). It should be clear that Xj < Xj−1.

What is the distribution of these tj? The CDF is clearly F (t) = t · . . . · t = tN , then
it follows that the PDF is

P[t] = F ′(t) = NtN−1.

Therefore
E[log t] =

−1
N

so
E[logXj] =

−j
N

and finally
E[Xj] = e−j/N .

The method produces a sequence of strictly decreasing Xj that can be used in the
calculation of Equation 3.

Now that we have a sequence of Xj with known distribution, how can we “pick” the
correspondingL(θj) to complete Equation 3 without needing to calculate θj directly?
Recall that we need them to be from the same distribution, so we let L(θj) be the
smallest among N uniform random numbers (to ensure this distribution requirement
while accounting for the fact that L(X) is decreasing with X).

7

This is perhaps the most interesting part of the NS algorithm: the connection between
L(Xj) and L(θj). As Skilling (1) describes, instead of taking Xj and computing the
corresponding θj directly, we can instead find θj by directly sampling from the prior
under the constraint that L(θj) > L(θj−1).

Why should we expect this approach to work? Recall that X(l) is a decreasing func-
tion of l, and similarly that L(X) is a decreasing function of X , and notice that the
above sampling procedure guarantees that the likelihood threshold increase as Xj

decreases. Therefore, our admittedly crude use of deterministic Xj is not a prob-
lem since they will be distributed the same as our increasing sequence of likelihoods
L(θj). Figure 5 demonstrates this process, and most importantly, the correspondence
between θj and Xj .

Figure 5. The correspondence between θj and Xj used to compute Ẑ. (2)

We are now in a position to present the formalized version of the NS algorithm.

1. Initialize: Start with N live points θ1, . . . , θN sampled from the prior distri-
bution. Let Z = 0.

2. Iterate: For j = 1, . . . ,m:

(a). Shrinkage: Compute L(θ1), . . . ,L(θN) and set

θ(j) = arg min
i=1,...,N

L(θi)

drop the dead point θ(j) from the set of N live points.

(b). Likelihood-restricted prior sampling: Sample from the prior to find a
θ such that L(θ) > L(θ(j)), reassign θ(j) ← θ to the set of live points. In
other words, we drop θ(j) and replace it with θ.

(c). Increment: Let Xj = e−j/N and set wj = Xj−1 − Xj . Then update
Z = Z + L(θ(j))wj

3. Termination: For a sufficiently large number of iterations m, the “width” of
the jth shell wj will near 0, at which point the algorithm has terminated.

8

At termination, we approximate the marginal likelihood Z by

Ẑ =
m∑
j=1

L(θ(j)wj . (4)

Taking a step back, we’ve followed through on the intuition developed in Section 2.1
in which we sought to transform Z into a 1-dimensional integral we approximated
with a summation.

But how does this approximation correspond with the notion of Lebesgue integration
mentioned in the introduction? Although Figure 5 uses Riemann sums to find Z,
whose width is captured by wj in Equation 4, these vertical slices wj are in fact
nested shells of prior mass with level height L(θ(j). It is from this attribute that the
NS algorithm gets its name.

3 EXAMPLE OF THE NS ALGORITHM

We now present an example of the NS algorithm in action. As first described by John
Skilling (2), an insightful example is the k dimensional Gaussian likelihood given by

L(θ) = exp
(−r2
2σ2

)
for

r2 =
k∑

i=1

θ2i

and prior given by

π(θ) =
(K/2)!

3.1415 . . .k/2
for r < 1.

How should we interpret this prior? Notice that the condition r < 1 defines a unit
hyper-sphere in k dimensions, and the prior is constant within this domain. If we set
σ sufficiently small, then nearly all likelihood is contained within this domain of the
prior.

Let us proceed with nested sampling to approximate the marginal likelihood Z in the
case of a k = 10 dimension parameter space Θ. For simplicity, we use N = 1 live
points and m = 70 iterations. While many other implementations may use N,m
much larger, these assumptions improve simplicity.

We follow the algorithm presented in Section 2.4, but are soon presented with the
challenge of constrained sampling from the prior to find a θ such thatL(θ) > L(θ(1)).
While brute force methods are possible, there exists a more direct approach using
the properties of the prior density. In particular, picking any point within the sphere
r < r1 will produce such a θ (1). In general, however, more sophisticated constrained
optimization methods may be needed for this step.

Repeating the sampling procedure for m = 70 iterations and using the deterministic
formula Xj = exp(−j/N), we obtain the following results shown in Figure 6 from
which we obtain log Ẑ = −43.6 (2).

9

Figure 6. A sequence of nested sampling points shown on a log scale, as logXj is
linear with respect to j. (1)

This example would be otherwise non-informative if it weren’t for Skilling (2) iden-
tifying this as a rare instance in which we can solve for Z explicitly if σ << k−1/2,
in which case nearly all likelihood lies within the prior domain.

This is accomplished by recognizing thatL is a decreasing function of radius r, which
essentially orders θ into radially nested shells with prior mass

X = rk

so that

L(X) = exp
(−X2/k

2σ2
)
,

in which case we can directly compute

Z = (k/2)!(2σ2)k/2 (2). (5)

A plot of Equation 5 for k = 10 and σ = 0.01 is shown below in Figure 7.

Notice that the simulated function in Figure 6 closely resembles Figure 7, revealing
the value of this example: often times we are unable to compute L(X) directly for
complex and high dimensional parameter spaces, forcing us to only rely on the the-
oretical foundation of the algorithm. However, in this case, we are able to compute
L(X) and confirm that our estimate of log Ẑ = −43.6 is close to the true value of
logZ = −37.81, whose difference is negligible on a log scale (1).

4 PROPERTIES OF THE NS ALGORITHM

4.1 Sampling from a constrained parameter space

The main focus of this subsection will be a discussion of the difficulties and practi-
calities of sampling from the prior under the constraint that L(θ) ≥ L(θ(j). Indeed,
this is the main “black box” assumption that Skilling relies on for the theoretical

10

Figure 7. Equation 5 plotted on a log scale (2).

4.2 Asymptotic error term

The approximation error E of the NS algorithm, as described by Chopin and Robert,
(5) is

E =

m∑
j=1

(Xj−1 −Xj)L(Xi)−
∫ 1

0
L(X)dX,

and can be rewritten as

E = −
∫ ϵ

0
L(X)dX (6)

+

(m∑
j=1

(Xj−1 −Xj)L(Xi)−
∫ 1

ϵ
L(X)dX

)
(7)

+

m∑
j=1

(Xj−1−Xj (Li(X
∗
i)− L(Xi)). (8)

As described by Chopin and Robert (5), we examine each component above.

The first error term arises from the algorithm running a finite number of iterations,
which in practice always causes some shell of prior mass dX to not be summed over.
In other words, while wj → 0 as j →∞, we should not expect a j such that wj = 0.
How should this first term behave? In the case that L is bounded from above, then
a termination point “sufficiently close to the X = 0 will produce

∫ ϵ
0 exponentially

small. One such number of iterations proposed by Chopin and Robert (5) that is to
set m = ⌈−(log ϵ)N⌉ so xj = exp(−m/N) ≤ ϵ < xj−1 where ϵ is the stopping
point in Equation 6.

The second term in Equation 6 is the numerical integration error which arises from
using deterministicXj as opposed to computing suchXj directly from θj . As Chopin
and Robert note, if L′(X) is bounded over [ϵ, 1], then this error component is of order

11

O(N − 1) since Xj−1 −Xj is of order O(N − 1) (5); the intuition being that if we
choose a large N , then the subsequent Xj will be close, so the simulated graph of
L(X) exemplified in Figure 6 is smooth so that it is “close enough” to the true graph
in Figure 7.

Finally, we address the third component of Equation 6. First let X∗
j be the true

value X associated with θj , in other words L(X∗
j) = L(θj). Recall that we set Xj

deterministically, only ensuring that it is distributed the same as L(θj) instead of
computing it directly. Therefore L(Xj) may under or overshoot L(X∗

j), and is thus
stochastic in nature (5). Setting

ηN =
m∑
j=1

(Xj−1−Xj (Li(X
∗
i)− L(Xi))

then we have the following result proven by Chopin and Robert (5).

Theorem 1. If L(X) is twice continuously differentiable over [ϵ, 1], and if its two
first derivatives are bounded over [ϵ, 1], then N1/2ηN converges in distribution to a
Gaussian distribution with mean zero.

A proof of Theorem 1 can be found in (5). The proof is computational in nature and
not overly instructive of the NS algorithm’s properties, and is thus omitted in full.
However, we present a proof “road map” below for the curious reader borrowed from
Chopin and Robert (5).

Proof. Let tj = X∗
j+1/X

∗
j be the ratio of the true mass thresholds associated with

the θj’s. As proven by Skilling (2), tj are i.i.d. Beta(N, 1) random variables, and
thus by the properties of the Beta distribution uj = tNj defines a sequence of i.i.d.
uniform [0, 1] random variables.

Next, consider the Taylor of expansion of ηN :

ηN =

⌈cN⌉∑
j=1

(Xj−1 −Xj)[L(X
∗
j)− L(Xj)]

=

⌈cN⌉∑
j=1

(Xj−1 −Xj)[ψ
′(− logXj)(logXi − logX∗

j) +O(logXj − logXj)
2]

where c = − log ϵ and ψ(y) = L(e−y). Next define

Sj = N(logXj − logX∗
j) =

j−1∑
k=0

(−1− log uk),

which is a sum of independent random variables with E(log uj) = −1 and Var(log uj) =
1. Thus, (logXj−logX∗

j) = OP (N
−1/2), where the implicit constant inOP (N

−1/2)
does not depend on j. We can then express

12

N1/2ηN = N−1/2

⌈cN⌉∑
j=1

(e−(j−1)/N − e−j/N)Sj

[
ψ′
(
j

N

)
+OP (N

−1/n

]

= c1/2
⌈cN⌉∑
j=1

∫ j/N

(j−1)N
e−tψ′(t)BN

(
t

c

)
dt
[
1 +OP (N

−1/2)
]

since ψ′(t) = ψ′(j
N) + O(N−1) for t ∈ [(j − 1)/N, j/N] and if BN (t) is defined

as BN (t) = (cN)−1/2S⌈cNt⌉ for t ∈ [0, 1]. Chopin and Robert then use Donsker’s
theorem to show that BN converges to Brownian motion on [0, 1] in the sense that,
for any measurable and almost surely continuous function f , f(BN) converges in
distribution to f(B), where B is Brownian motion on [0, 1]. They then use this to
argue that

N1/nηN = c1/2
∫ ⌈cN⌉/N

0
e−tψ′(t)BN

(
t

c

)
dt+OP (N

−1/2)

N1/nηN = c1/2
∫ ⌈cN⌉/N

0
e−tψ′(t)BN

(
t

c

)
dt+OP (N

−1/2)

L−−→ c1/2
∫ c

0
e−tψ′(t)B

(
t

c

)
dt

which Chopin and Robert show has the same distribution as∫ c

0
e−tψ′(t)B(t)dt =

∫ 1

ϵ
sL′(s)B(− log s)ds

which is a zero mean Gaussian variate, concluding the proof sketch (5).

REFERENCES

Skilling, J. (2004). Nested sampling. AIP Conference Proceedings 735 395.

Skilling, J. (2006). Nested sampling for general Bayesian computation. Bayesian
Anal. 1, 833–60.

Bickel, P.J., & Doksum, K.A. (2015). Mathematical statistics: Basic ideas and se-
lected topicsnvolume 1. CRC Press.

Buchner, J. (2023, March 30). Nested sampling methods. arXiv.org. Retrieved April
2, 2023, from https://arxiv.org/abs/2101.09675

Chopin, N., &; Robert, C. P. (n.d.). Properties of nested sampling. Aca-
demic.oup.com. Retrieved April 2, 2023, from https://academic.oup.com/
biomet/article-abstract/97/3/741/243485

Buchner, J. (2014, September 12). A statistical test for nested sampling algorithms
- statistics and computing. SpringerLink. Retrieved April 2, 2023, from https:
//link.springer.com/article/10.1007/s11222-014-9512-y

13

https://arxiv.org/abs/2101.09675
https://academic.oup.com/biomet/article-abstract/97/3/741/243485
https://academic.oup.com/biomet/article-abstract/97/3/741/243485
https://link.springer.com/article/10.1007/s11222-014-9512-y
https://link.springer.com/article/10.1007/s11222-014-9512-y

Higson, E., Handley, W., Hobson, M., &; Lasenby, A. (2018, December
3). Dynamic nested sampling: An improved algorithm for parameter estima-
tion and evidence calculation - statistics and computing. SpringerLink. Retrieved
April 2, 2023, from https://link.springer.com/article/10.1007/
s11222-018-9844-0

Feroz, F., &; Skilling, J. (2013, August 21). Exploring multi-modal distribu-
tions with nested sampling. AIP Publishing. Retrieved April 2, 2023, from
https://aip.scitation.org/doi/abs/10.1063/1.4819989casa_
token=Vys9Sv5S9DcAAAAA

Roberts, G. Rosenthal, J. (1999). Convergence of slice sampler Markov chains. J. R.
Statist. Soc. B 61, 643–60.

14

https://link.springer.com/article/10.1007/s11222-018-9844-0
https://link.springer.com/article/10.1007/s11222-018-9844-0
https://aip.scitation.org/doi/abs/10.1063/1.4819989casa_token=Vys9Sv5S9DcAAAAA
https://aip.scitation.org/doi/abs/10.1063/1.4819989casa_token=Vys9Sv5S9DcAAAAA

	Introduction
	The algorithm
	Conceptual overview
	Formal definition
	The approximation
	The NS algorithm

	Example of the NS algorithm
	Properties of the NS algorithm
	Sampling from a constrained parameter space
	Asymptotic error term

