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Abstract

We study the dynamics of a polygon as its vertices are iteratively
reflected across the perpendicular bisector of their neighbors. For in-
scribed polygons and uninscribed quadrilaterals, we prove conditions
for congruence with the initial polygon, and disprove the result for
general polygons.

1 Introduction

Consider any set of n points P = {z1, . . . , zn} for zi ∈ R2, and the corre-
sponding n-polygon consisting of sides zizi+1 for i ∈ {1, . . . n} where zn+1 = z1
and z0 = zn. Then consider the dynamical system defined by operators
{r1, . . . rn} where ri(P) reflects vertex zi across the perpendicular bisector
of its two neighbors zi−1 and zi+1 to obtain z′i, which replaces zi in P. We
refer to ri as a single reflection operation, described below in Figure 1, and
write Pk = {zk1 , . . . , zkn} to denote P after k reflection operations.

Figure 1: A reflection operation applied to point zi ∈ P to obtain z′i, where
the dashed line is the perpendicular bisector of zi+1 and zi−1.
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As demonstrated in Figure 1, the reflection operation does not change a
vertex’s adjacencies, but essentially swaps the side lengths connecting zi−1
to zi, and zi to zi+1, respectively. To formalize this notion, first define the
n−tuple

Sk = (Sk
1 , . . . , S

k
n−1, S

k
n) = (∣zk2 − zk1 ∣, . . . , ∣zkn − zkn−1∣, ∣zk1 − zkn∣)

that contains the side lengths of the polygon defined by Pk. If ri is applied
at iteration k + 1,

Sk+1 = {Sk
1 , . . . , S

k
i+1, S

k
i , . . . , S

k
n}.

Unsurprisingly, because perimeter is the sum of the individual side lengths
the perimeter of the polygon is invariant under ri. However, other proper-
ties such as convexity and self-intersection can be violated for a general n
points. For example, Figure 2 and Figure 3, show polygons that become self
intersecting and concave, respectively, after a reflection operation.

Figure 2: A reflection resulting in a self-intersecting polygon.

Figure 3: A reflection resulting in a convex polygon becoming concave.
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To study what properties of P0 and Pk produce congruent polygons, where
two sets or polygons are congruent if one can be transformed into the other
by an isometry – a sequence of rigid motions – we first state conditions on
the initial set P0. Specifically, we assume that P0 is inscribed on a circle
and that the initial points are arranged in increasing order from [0,2π] along
its circumference, described in detail in Section 2. These initial conditions
will subsequently open the door to proving conditions on P that produce
congruence between the initial and final polygon after some number k ≥ 0 of
reflection operations. In particular,

Theorem 1. Given an inscribed set Pk for k ≥ 0 with ordered initial points
given in Equation 1, if Sk = S0, then the polygons defined by Pk and P0 are
congruent.

We then relax these initial conditions to find for a non inscribed quadrilat-
eral,

Theorem 2. Given a P0 such that ∣P0∣ = 4, if S0 = Sk then the polygons
defined by P0 and Pk are congruent.

Both proofs will rely on bridging the gap between the dynamical system to
the geometry, then the geometry to the algebra. For the inscribed case, we
first formalize the initial conditions on P0 in Section 2. We then describe
invariants of P in Section 3, namely inscribeability, area, and convexity. Af-
ter proving under what conditions we can conclude that the final polygon
is congruent to the initial polygon in Section 4, we find an algebraic repre-
sentation of the reflection operation in Section 5. In Section 6, we remove
these initial conditions in the special case when ∣P ∣ = 4 to prove a condition
on congruence, then show a counter example for this proof in the general
case of n ≠ 4 in Section 7.

2 Initial conditions on P0

We first require that P0 is inscribed on a circle. Recall the general case of
P = {z1, . . . , zn} for zi ∈ R2, and consider the polar representation zi = sieiθi
for radius si and angle θi ∈ [0,2π]. As P0 is inscribed, we can then assume
without loss of generality for P0 that si = 1 for all i = 1, . . . , n. Therefore, we
can fully characterize z0i in terms of θ0i measured with respect to an arbitrary
point on the unit circle. In doing so, we essentially reduce the dimension
from P0 ∈ R2n to P0 ∈ [0,2π]n, and we proceed to write P̃0 = {θ01, . . . , θ0n}
and use the same set of operators {r1, . . . , rn}. Using this assumption, we’ll
later show that Pk is also inscribed for all k ≥ 0.
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Our second assumption is that the θ0i are arranged in increasing order from
[0,2π] along the circumference of the unit circle,

0 ≤ θ01,≤ . . . ≤ θ0n ≤ 2π, (1)

where we say that P̃0 is ordered if Equation 1 holds.

Notice that this change of variables preserves the properties of the original
representation. In particular, P̃0 still defines a polygon when we form line
segments between points (1, θi) and (1, θi+1), and these segments will now
form chords on the unit circle subtended by a central angle of ∣θi+1 − θi∣. In
general, since the length of a chord on the unit circle with central angle of θ
is given as 2 sin ( θ2), we can completely characterize the side lengths of the

polygon defined by P̃0 similarly as before using the n-tuple

S̃ = (S̃1, . . . , S̃n−1, S̃n) = (∣θ2 − θ1∣, . . . , ∣θn − θn−1∣, ∣θ1 − θn∣).

3 Invariants of an inscribed polygon

We now proceed under the assumption that P̃0 is inscribed on a unit circle,
and write P̃0 = {θ01, . . . , θ0n} for 0 ≤ θ01,≤ . . . ≤ θ0n ≤ 2π. However, in order to
leverage these assumptions in our proof of the polygon’s invariants, we first
must prove that these assumptions are invariant themselves under reflection
operations.

3.1 Invariance of assumptions

Lemma 1. Given P̃0 inscribed on a circle with P̃0 = {θ01, . . . , θ0n}, then Pk

for k ≥ 0 is also inscribed on a circle, and the center is invariant.

Proof. We proceed using induction on k, where the base case holds by as-
sumption. Now consider the set Pk = {zk1 , . . . , zkn} after k reflection opera-
tions, and recall that ri(Pk) reflects zki over the perpendicular bisector of
zki−1 and zki−1.

Denoting the center of the circle by point O, consider the segment Ozki .
Because a reflection over a line in Euclidean space is distance preserving
by definition of reflections being an isometry, if we obtain the points O′

and zk+1i after a reflection we must have that ∣Ozki ∣ = ∣O′zk+1i ∣. Because the
perpendicular bisector of the chord zki−1z

k
i−1 goes through O, then O = O′.

Therefore ∣Ozki ∣ = ∣Oz
zk+1i
i ∣. Therefore it follows that the segment Oz

k+1
i is
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also a radius on the circle, and so Pk+1 = {zk+11 , . . . , zk+1n } is also inscribeable
and can therefore be written as Pk+1 = {θk+11 , . . . , θk+1n }. This is shown in
Figure 4 below.

Figure 4: Reflecting zi to z′i in a reflection operation.

In essence, what we have shown is that our first assumption on the in-
scribeability of P̃0 is invariant. Therefore, we can freely use the notation
that P̃k = {θk1 , . . . , θkn} for all k ≥ 0. We now proceed to do the same for our
second assumption on the ordering of the initial angles θ0i .

Theorem 3. Given P̃0 = {θ01, . . . , θ0n} inscribed on a circle, if P̃0 is ordered
0 ≤ θ01,≤ . . . ≤ θ0n ≤ 2π, then for every k ≥ 0 there exists a rotation Rα by α
degrees such that 0 ≤ Rα(θk1),≤ . . . ≤ Rα(θkn) ≤ 2π.

Since we are essentially considering θ1, . . . , θn modulo 2π, it is not hard to
see that it is possible that at some iteration we reflect θn over θ = 0 = 2π to
obtain 0 ≤ θn ≤ θ1, and hence the need for the rotation Rα.

Proof. We again proceed by induction, where the base case holds by assump-
tion. Consider P̃k = {θk1 , . . . , θkn} which we assume to be ordered θk1 ≤ . . . ≤ θkn.
Setting α = θki−1 and applying the rotation function Rα to all n points,

0 = Rα(θki−1) ≤ Rα(θki ) ≤ Rα(θki+1).

Now apply the reflection operation to these rotated points to obtain Rα(θki )′.
Noting that the perpendicular bisector of Rα(θki−1) and Rα(θki+1) is also the
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perpendicular bisector of Rα(θki ) and Rα(θki )′ the midpoints of these two
arcs are also the same, therefore

Rα(θki+1) +Rα(θki−1)
2

= Rα(θki ) +Rα(θki )′
2

so
Rα(θki )′ = Rα(θki+1) +Rα(θki−1) −Rα(θki ). (2)

Using Rα(θki−1) = 0 and Rα(θki+1) ≥ Rα(θki ), it follows that

Rα(θki−1) ≤ Rα(θki )′ ≤ Rα(θki+1).

As the rest of the n points aside from θki are unaffected by a reflection
operation to θki , it follows that there exists a rotation Rα by α degrees such
that

0 ≤ Rα(θk1),≤ . . . ≤ Rα(θkn) ≤ 2π.

Similar to inscribeability, the relative ordering of points is invariant under
reflection operations. Aside from helping us prove invariants, this result will
also facilitate a proof of congruence in Section 4 and a closed form matrix
representation of ri in Section 5.

3.2 Invariance of polygon properties

Until now we have not bridged the gap between the initial assumptions on P0

and the resulting polygon. However, we now do so by turning our attention
to invariants of the polygon under reflection operations.

Lemma 2. Given an inscribed and ordered set P̃k = {θk1 , . . . , θkn} for k ≥ 0,
let Ak denote the area of the polygon defined by P̃k, then Ak is invariant
under reflection operations.

Proof. By Theorem 3, there exists a rotation Rα such that

0 ≤ Rα(θk1),≤ . . . ≤ Rα(θkn) ≤ 2π.

As this rotation is area preserving, we proceed to assume without loss of
generality that 0 ≤ θk1 ≤ . . . ≤ θkn ≤ 2π.

We prove that Ak is invariant by proving the area contained within the
circle but not contained within the polygon is constant, formally that the
total area of the segments is constant, where a single segment is shown in
Figure 5.
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Figure 5: A single segment defined by the chord between θki+1 and θki

Recall that the area of a segment with interior angle θ is given as 1
2(θ−sin θ)

and let Ak
i denote the area of the segment formed with interior angle θki+1−θki .

Therefore Ak = ∑n
i=1Ai. Since it holds at each reflection operation that

S̃k+1 = {S̃k
1 , . . . , S̃

k
i+1, S̃

k
i , . . . , S̃

k
n}

where S̃i = ∣θi+1 − θi∣, it follows that Ak
i−1 = Ak+1

i and Ak
i = Ak+1

i−1 , thus Ak is
invariant.

Claim 1. Given an inscribed and ordered set P̃k = {θk1 , . . . , θkn} for k ≥ 0,
then the polygon defined by P̃k is convex for all k ≥ 0.

We do not provide a full proof of this claim here, but one can do so by
showing the intersection of n convex sets, each itself the intersection between
a half-space formed using points θi and θi+1 and the unit circle, is also
convex.

4 Congruence for inscribed and ordered P̃0

We now turn our attention to under which conditions on P̃k can we conclude
that the two polygons associated with P̃0 and P̃k are congruent. As opposed
to relying on geometric properties of the two polygons, this proof also uses
a rotation function Rα similar to the proof of the invariant of the ordering
assumption in Theorem 3. First, recall that we define the n−tuple

S̃k = (S̃k
1 , . . . , S̃

k
n−1, S̃

k
n) = (∣θk2 − θk1 ∣, . . . , ∣θkn − θkn−1∣, ∣θk1 − θkn∣).

to be the side lengths of the polygon defined by Pk.

Theorem 4. Given an inscribed and ordered set P̃k = {θk1 , . . . , θkn} for k ≥ 0,
then if S̃k = S̃0 then the two polygons defined by P̃k and P̃0 are congruent.
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Proof. Recall from Section 1 that we define two sets P̃k and P̃0, and thus
their corresponding polygons, to be congruent if their exists a distance pre-
serving isometry between them. We show this is the case using Theorem 3
to show that there exists a rotation Rα such that Rα(P̃k) = P̃0.

Letting α = θk1 , we obtain

Rα(P̃k) = {0, θk2 − θk1 , . . . , θkn − θk1},

and from Theorem 3 it then follows that

0 ≤ θk2 − θk1 ≤ . . . ,≤ θkn − θk1 ≤ 2π. (3)

We now claim that

Rα(P̃k) = {0, θk2 − θk1 , . . . , θkn − θk1} = P̃0

where it suffices to prove that for a general i ∈ 1 . . . , n that θki − θk1 = θ0i .
Observing that

θki − θk1 = (θki − θki−1) + (θki−1 − θi−2) . . . + (θk2 − θk1) (4)

we can use Equation 3 to note for all j ∈ {2, . . . , n} that

(θkj − θkj−1) ≥ 0

so
(θkj − θkj−1) = ∣θkj − θkj−1∣ = S̃k

j−1.

Therefore, we can rewrite Equation 4 as

θki − θk1 = S̃k
i−1 + . . . + S̃k

1

By assumption of S̃k = S̃0, we have that S̃k
j = S̃0

j for all j, so

S̃k
i−1 + . . . + S̃k

1 = S̃0
i−1 + . . . + S̃0

1

and by assumption of the ordering of P0, we similarly have that

S̃0
i−1 + . . . + S̃0

1 = θ0i − θ01

Applying a rotation to P̃0 by θ01 degrees gives that Rβ(θ01) = 0, thus we
can assume without loss of generality that θ01 = 0. We have thus shown that
θki −θk1 = θ0i , and thus there exists an isometry between P̃0 and P̃k, producing
congruence between the two sets and their associated polygons.
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5 Algebraic representation

In addition to the invariants proven above, reflection operations performed
on inscribed sets are can be described by closed form matrix expressions.

5.1 Representation using reflection matrices

Since P0 being initially inscribed implies that Pk is also inscribed on a
circle, we can think of the reflection operators {r1, . . . , rn} as simply rotating
vertices of the polygon around the unit circle at each step

We first noted in the proof of the invariancy of the ordering assumption in 3
that considering P modulo 2π presents difficulty when seeking to character-
ize θk+1i in terms of θki−1, θ

k
i , θ

k
i+1. However, we addressed this issue by using

a rotation function Rα to essentially orient the location on unit circle where
0 = 2π in a way that avoid these issues.

In fact, recall from Theorem 3 the intermediate step that

Rα(θki )′ = Rα(θki+1) +Rα(θki−1) −Rα(θki ).

If we apply the reverse rotation R−1α then we recover the original orientation
of the points, less θi, with respect to the unit circle.

However, it would be incorrect to assume that we can take such an inverse
while still operating modulo 2π. Instead, if we revise our initial ordering
condition to be

−∞ < θ01 ≤ . . . ≤ θ0n <∞
we avoid the modulo 2π issue and can take the inverse of Equation 2 to
obtain

θk+1i = θki+1 + θki−1 − θki .

Next, if we instead consider P to be a vector as opposed to a set, so P =
[θk1 . . . θkn]⊺, then the reflection operators {r1, . . . , rn} we’ve been using now
behave as a family of n reflection matrices written {T1, . . . , Tn}.

We construct the ith reflection matrix row by row as follows. Each row j
other than the ith row will simply be the jth unit vector. For row i, the ith

element will be a −1, while the (i + 1)th and (i − 1)th element will be 1, of
course when considered cyclically. We present a full implementation of this

9



algorithm in the appendix. Consider the case of n = 4 below.

T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 −1 1 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 −1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, T4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

5.2 Properties of reflection matrices

Observation 1. Ti = T −1i .

Proof. Note that the the perpendicular bisector of θi−1 and θi+1 is unchanged
after a reflection operation on θi. Therefore, applying a second reflection
operation reflects θ′i across the same line, returning to θi, and thus therefore
TiTi = I from which it follows that Ti = T −1i since Ti has an inverse.

Observation 2. For ∣i − j∣ mod (n − 1) ≥ 2, TiTj = TjTi and (TiTj)2 = I.

We require ∣i − j∣ mod (n − 1) ≥ 2 so that the points (1, θi) and (1, θi+1) are
not adjacent.

Proof. It holds that θj ≠ θi−1 and θj ≠ θi+1. Therefore applying a reflection
operation on θi does not change the perpendicular bisector of θj thus, the
order that we apply the reflection operations is arbitrary, and so TiTj = TjTi.
Considering the sequence of reflection operations TiTjTiTj, it follows that
TiTjTiTj = TiTiTjTj. Using that Ti = T −1i gives TiTiTjTj = I.

6 A special case: Quadrilateral congruence

Previously, while analyzing congruence relations on n-polygons, we simpli-
fied the problem such that the polygons were inscribed in a circle and non-
self-intersecting. In this section, we will lift these restrictions and focus on
polygons with four sides and show the following result.

Theorem 5. Given a P0 such that ∣P0∣ = 4, if S0 = Sk then the polygons
defined by P0 and Pk are congruent.
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Proof. First, note that the sum of opposite angles in a quadrilateral remains
invariant under any of the operations r1, r2, r3, r4. Since angle α doesn’t
change, the sum of opposite angles remains α + γ = C, where C is some
constant. Figure 6 illustrates this. Similarly, the sum of the other two
opposite angles remains constant, equal to 2π − α − γ = 2π − C. Note that
there are two pairs of opposite angles, the sum of one pair is equal or less π,
and the sum of the other pair will be equal or greater than π. Without loss
of generality, assume that α + γ = C ≤ π.

Figure 6: Sum of opposite angles is invariant under an operation.

Now, consider the polygon Pk we get after a sequence of operations (Figure
7). Recall that the sum of opposite angles remains constant; therefore,
α + γ = α′ + γ′ = C, then γ′ = C − α′.

Figure 7: Getting back to the same permutation of the sides after some
operations.

Now we will show that there is a unique possible value for angle α′. Consider
the triangles z1z2z4 and z2z3z4. We know they have to be such that z2z4 has
the same length in both triangles. Figure 8 illustrates this.

Consider the triangles z1z2z4 and z2z3z4 as shown in Figure 8. In in triangle
z1z2z4, let the length of z2z4 be a function of α′. As α′ goes from 0 to π, the
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length of z2z4 increases. Similarly, in triangle z2z3z4, let the length of z2z4
be a function of α′. As α′ increases, C −α′ decreases, and the length of z2z4
decreases.

Figure 8: z2z4 must have the same length in both triangles.

Since one function is strictly increasing and the other strictly decreasing,
they only intersect at one point, as shown in Figure 9. Therefore, α′ has
only one possible value. But we already know there is a value that satisfies
this system (this quadrilateral), and that value is α. Therefore α′ = α, and
γ′ = C − α′ = C − α = γ.

Figure 9: Quadrilateral diagonal as a function of α′.

Now that we have these uniquely defined triangles, we only need to glue them
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by the common diagonal z2z4 to get back the polygon they describe. Note
this gluing operation can only be done in one way since we need to preserve
both the order of sides (s1, s2, s3, s4) and the sum of opposite angles.

7 Counter example for the general case

Previously, we have shown in Theorem that 4 given an inscribed and ordered
set P̃k = {θk1 , . . . , θkn} for k ≥ 0, then if S̃k = S̃0 then the two polygons defined
by P̃k and P̃0 are congruent. We now provide a counter example in the
general case

Consider the self-intersecting five-sided polygon in Figure 10, where P =
{z1, .., z5} and the lengths of sides S0

i are labeled as i.

Figure 10: Initial polygon for counter-example

We will now apply a series of operators on P0, precisely r2r3r4r5r4r3r2r1(P0)
as shown in Figure 11. These operations produce P8, shown in the top right
of Figure 11. At each step, the blue polygon represents Pk, and the orange
polygon represents the original polygon. Notice that in P8, all side lengths
i are in between the points zi and zi+1, so we know S8 = S0.

However, despite the condition S8 = S0 being satisfied, clearly, we can see
that the blue and orange polygons are not congruent, so Theorem 4 no
longer holds in the general case when the assumptions in Section 2 are
violated.
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Figure 11: A series of reflection operations performed on the counter-
example polygon, where the length of side S0

i is labeled as i.

14



8 Appendix

We used this simulation to explore the transformation ri studied throughout
the paper.

9 Reflection

Throughout the course of this project, one aspect where we struggled the
most was making our notation formal and clear. We originally were pretty
vague about the definition of a permutation, especially since the length of
the sides between any two vertices changed after each reflection operation.
By working with the Feng and Susan, we developed more formal notation
and rewrote our paper so that it was more formal and clear.

We also received lots of feedback for making our paper more concise. To do
so, from draft to draft, we looked at each section and rewrote them, and we
also met with the mentors one on one to get more specific feedback on how
to be more concise.

10 Who did what

Section 1 (Introduction) - Peter

Section 2 (Assumptions) - Peter

Section 3.1 (Invariance of assumptions) - Written and formalized by Peter,
although discussed generally as a group.

Section 3.2 (Invariance of polygon properties) - Written and formalized by
Peter, although discussed generally as a group.

Section 4 (Congruence for inscribed and ordered P̃0) - Written by Peter,
formalized by Peter and Oscar, although mathematics were discussed as a
group.

Section 5 (Algebraic representation) - Peter

Section 6 (A special case: Quadrilateral congruence) - Oscar

Section 7 (Counterexample of the general case) - Cathy
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