
Expander Graphs and their Construction

Peter Hoffman

December 3, 2023

Abstract

We study expander graphs, specifically their construction and their applications
in network theory. We begin by presenting a method to generate expander graphs
via a random d-regular bipartite multigraph, then verify our construction by proving
that there exists a 10-regular bipartite multigraph with an expansion of at least 6.
Using this construction, we provide a proof of the unique neighbor expansion. We
conclude by discussing an application of expander graphs in network theory.

Keywords: Expander Graphs, Network Theory, Robust Networks, Random d-regular Bipartite
Multigraphs, Unique Neighbor Expansion

1 Introduction

Expander graphs are graphs whose vertices have constant degrees but that nevertheless exhibit
well-connected properties. While it is not immediately obvious that they exist in the first place,
we prove they do using a random d-regular bipartite multigraph. We then use this existence to
prove other important properties, namely the unique neighbor expansion and an upper bound
on the number of rounds needed in order for a message which propagates from vertex to vertex
to reach a certain number of vertices. These properties, as alluded to below, are of interest in
part due to the physical networks modeled by expander graphs.

In the remainder of this introduction, we first motivate the study of expander graphs by offering
a brief overview of their applications. We then provide a brief overview of the wider study of
expander graphs in the hopes of conveying how our work fits into the wider body of established
knowledge.

In terms of applications, expander graphs are highly related to the construction of networks,
such as roads, telephone lines, and the internet. In these instances, there is clearly a benefit to
decreasing the number of connections to decrease cost. However, the network must still be well-
connected in the sense that cars/phone calls/information can reach their destination efficiently
and without risk of a single linkage failure downing the entire network. Therefore, it is important
to understand expander graphs, especially their constructions and properties, in order to ensure
efficiency in the physical networks they inspire. In addition, expander graphs have numerous
applications in computer science, such as in the design of algorithms and error correcting codes
[2].

We next describe several high-level trends that exist within previous attempts to study expander
graphs. While this information is not needed for the understanding of our subsequent proofs,
the curious reader may find interest in this background.

As described in a 2006 survey conducted by Hoory, Linial, and Wigderson, there are four dis-
tinct aspects of expander graphs that have been studied over time: extremal problems, typical
behavior, explicit constructions, and algorithms. According to the group, “extremal problems
focus on the bounding of expansion parameters, while typical behavior problems characterize
how the expansion parameters are distributed over random graphs.” Finally, “explicit construc-
tions focus on constructing graphs that optimize certain parameters and algorithmic questions
study the evaluation and estimation of parameters” [5]. In our paper we turn our attention to
a randomized construction and the typical behavior of expander graphs. We simplify matters
by restricting ourselves to random d-regular bipartite multigraphs. This use of randomness is
a common technique in the study of expander graphs and appears often in proofs related to
showing that a given class of graphs is an expander with non-zero probability.
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The remainder of this work is divided as follows. Section 2 defines graph-theoretic notation that
will serve as a foundation for the sections to follow. Next, Section 3 outlines a construction of
a random d-regular multigraph that will be shown to be an expander graph for the case where
d = 10 in Section 4. Section 5 then provides a proof of the unique neighbor expansion for an
expander graph. Lastly, Section 6 uses an expander graph to prove a question related to network
theory, namely that a message originating at a vertex and which propagates from a vertex to its
neighbors in discrete time steps reaches Ω(n) vertices in at most O(logn) rounds.

2 Graph notation

We first define notation that will facilitate the more technical discussion that follows. The
purpose of this is twofold: firstly to make our work more accessible to those unfamiliar with
graph theory, and secondly to eliminate any confusion with conflicting notation encountered in
elsewhere for those who are familiar with graph theory. As will become clear in Section 3, a
random d-regular bipartite multigraph will serve as the foundation of our construction of an
expander graph.

Definition 1 (Bipartite). A graph G = (V,E) is said to be bipartite if V can be partitioned into
two disjoint sets A,B such that each edge of E has one endpoint in A and one endpoint in B.

Definition 2 (d-regular). A graph G = (V,E) is said to be d-regular if for every vertex v ∈ V it
is true that deg(v) = d

Definition 3 (Multigraph). A multigraph is a graph which is permitted to have multiple edges.

We combine the above attributes in the following section to produce a graph that we later prove
in Section 4 to be an expander with non-zero probability.

3 Construction of an expander graph

In this section, we first describe the construction of a random graph. We then verify that our
construction produces a random d-regular bipartite multigraph.

3.1 Random graph construction

The following construction produces a random graph G on 2n vertices via a random assignment
of edges. As noted below, Figure 1 above provides an example of these steps.

Step 1: define two vertex sets A,B such that ∣A∣ = ∣B∣ = n. Label these vertices as a1, . . . , an and
b1, . . . , bn, respectively.

Step 2: define another graph G′ as follows. For each vertex ai ∈ A, create d vertices, ai,1, . . . , ai,d.
Do the same for each vertex bj ∈ B to produce bj,1, . . . , bj,d. Then define two vertex sets A′ (resp.
B′) to exist on ai,j (resp. bi,j) for i = 1, . . . , n and j = 1, . . . , d. Therefore, ∣A′∣ = ∣B′∣ = nd.
Intuitively speaking, think of each of these vertices in G′ as corresponding to their “parent”
vertex in G.

Step 3: assign edges among the vertices of G′ as follows. Create a random permutation π ∶ A′ →
B′ and add an edge between ai,p and bj,q if π(ai,p) = bj,q.

Step 4: we use G′ to define the edges of G. For every ai ∈ A and bj ∈ B, add exactly one edge
for every ai,p ∈ A′ that is adjacent to a bj,q ∈ B′. This concludes the construction.

See Figure 1 above for a depiction of these four steps in the case where n = 3 and d = 2.

3.2 Proof of desired properties

We show that G is d-regular and bipartite. Please note that any use of the term “the construc-
tion” refers to the process which we followed to generate G in Section 3.1 above.

We begin by showing that G is d-regular by reasoning about the corresponding properties of
G′.

Fact 1. Graph G is d-regular.
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Figure 1: Construction of a random bipartite 2-regular graph on 6 vertices.

Proof. Without loss of generality, consider a vertex ai ∈ A. We proceed by showing that ai has
a degree of exactly d.

First, recall that in our construction of G′ we defined d vertices for every vertex in G, and thought
of them as belonging to their parent vertex ai or bi in G. After repeating this process for every
ai ∈ A and bi ∈ B, we defined a permutation π ∶ A′ → B′.

Notice that since π is a permutation, it is a bijection. It then follows that every ai,p ∈ A′

maps to exactly one bj,q ∈ B′. In other words the d vertices ai,1, . . . , ai,d will be adjacent to
exactly d vertices bj,q ∈ B′ for q ∈ {1, . . . , d} and j ∈ {1, . . . , n}. We will now uses this one-to-one
correspondence to reason about the number of edges of ai.

Returning to G, recall that we added one edge between ai and bj for every ai,p ∈ A′ that is
adjacent to some bj,q ∈ B′. By the logic established above, there will be exactly d such bj,q ∈ B′.
Therefore, ai will have a degree of d. By symmetry, the same is true for all bi. Thus every vertex
of G will have a degree of d and it follows that G is d-regular from Definition 2.

We next claim that G is also bipartite.

Fact 2. Graph G is a bipartite.

Proof. We proceed to show that G is bipartite on sets A and B.

In our construction of G, we added exactly one edge between ai ∈ A and bj ∈ B for every ai,p ∈ A′
that is adjacent to some bj,q ∈ B′. Therefore, every edge of G will have one vertex in A and one
vertex in B. It then follows that G is bipartite on sets A and B.

Remark. Note that every graph in the family of random graphs produced from the construction
is not necessarily a multigraph. However, we informally refer to G as a multigraph because it it
permitted to have multiple edges.

4 Expansion of a random graph

In this section, we turn our attention to the expansion of a graph. We first define additional
notation related to the expansion of a graph before proving there exists a 10-regular bipartite
multigraph with an expansion of at least 6.

4.1 Expansion notation

As first described in Section 1, an expander is a graph with constant degrees but that never-
theless exhibits well-connected properties. We begin by defining a concept related to a graph’s
expansion.
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Definition 4 (Neighborhood). Given a graph G = (V,E) and a subset of vertices U ⊆ V , the
neighborhood of vertex set U , denoted Γ(U), is the set Γ(U) ⊆ V such that every vertex in Γ(U)
has at least one edge to a vertex in U .

As will become clear in the definition of a graph’s expansion below, our main goal when proving
that a graph is an expander is show that every vertex subset U of V has “many” neighbors
compared to ∣U ∣.

Definition 5 (Expansion of a graph). Given a d-regular graph G = (V,E), its expansion is
defined as

Λ(G) ∶= min
U⊆V s.t. ∣U ∣≤ ∣V ∣

1000

∣Γ(U)∣
∣U ∣

(1)

Given a graph’s expansion as defined above, we refer to that graph has an expander graph if its
expansion is above a certain threshold. In other words, if every not-too-large subset of vertices
has many neighbors compared to the size of the subset.

4.2 Proof of expansion

Using our construction described in Section 3.1, we now prove the existence of a specific ex-
pander.

Theorem 1. There exists a random 10-regular multigraph G = (V,E), bipartite on sets A and
B where ∣A∣ = ∣B∣ = n for sufficiently large n, such that Λ(G) ≥ 6.

Proof. We proceed to show that for a random graph G it holds that P[Λ(G) < 6] < 1, thus
guaranteeing the existence of an expander. We use two results, namely Lemma 2 and Lemma
3, that are proven in the following section.

For convenience of notation, for a given set U we denote its expansion as EU ∶= ∣Γ(U)∣∣U ∣ . Because

the expansion of a graph is defined as the minimum of EU over all subsets U with ∣U ∣ ≤ ∣V ∣
1,000

,

in order for Λ(G) < 6 there must exist at least one subset U with EU < 6. We therefore seek
P[∃UA∣EUA < 6].

Using Lemma 2, proven in Section 4.3 below, it holds for n sufficiently large that

P[∃UA∣EUA < 6] <
1

2
.

In other words, Lemma 2 produces a strict upper bound on the probability that there exists a
set UA ⊂ A with an expansion less than 6. However, we seek to bound the probability that there
exists a set U ⊂ V with an expansion strictly less than 6, where U can contain vertices in both
A and B.

To extend our analysis to the broader case, we use the result of Lemma 3, proven in Section
4.3 below, that

P[∃U ∣EU < 6] ≤ P[∃UA∣EUA < 6] + P[∃UB ∣EUB < 6].

We finally produce an upper bound on P[Λ(G) ≥ 6]. Using the results of Lemma 2 and Lemma
3, we use symmetry on sets A and B to find that

P[Λ(G) < 6] ≤ P[∃UA∣EUA < 6] + P[∃UB ∣EUB < 6] <
1

2
+ 1

2
< 1.

This in turn implies that
P[Λ(G) ≥ 6] > 0

and the proof follows.

4.3 Proof of lemmas used in Theorem 1

Before we seek to bound the probability that there exists a subset U with ∣U ∣ ≤ ∣V ∣
1000

such that
EU < 6, first consider the simpler case of U ⊂ A. More specifically, recall that U is permitted to
contain vertices in A and B. Therefore, define sets UA = U ∩A and UB = U ∩B. We now prove a
bound on P[EUA < 6] so that we can subsequently produce P[∃UA∣EUA < 6] by union bounding
over all such UA.
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Lemma 1. For a random 10-regular bipartite multigraph and a subset UA ⊂ A, it holds that

P[EUA < 6] ≤ (
ne

6u
)
6u

(6u
n
)
10u

Proof. Given UA, we first find the probability that all edges from UA go a given T ⊆ B, denoted
P[UA ↦ T ]. For convenience, let ∣UA∣ = u and ∣T ∣ = t.

There are 10u edges leaving UA and 10t edges arriving in T , thus there are thus (10t
10u
) possible

assignments. Similarly, there are (10n
10u
) total ways to connect the 10u edges from UA to any of

the 10n edges of B. We then have that

P[UA ↦ T ] =
(10t
10u
)

(10n
10u
)
.

Using the identity that (n
k
) ≤ (ne

k
)k we can bound P[UA ↦ T ] from above by

P[U ↦ T ] =
(10t
10u
)

(10n
10u
)
≤
( 10te

10u
)10u

( 10ne
10u
)10u

≤ ( t
n
)
10u

. (2)

We now seek to bound P[EUA < 6] by using the union bound on P[U ↦ T ] over all T with
u ≤ t < 6u, as this stipulation would guarantee that EUA < 6. Using our previously obtained
result for P[U ↦ T ] in Equation (2), we have that

P[EUA < 6] ≤ ∑
T

s.t. t<6u

P[UA ↦ T ] = ∑
T

s.t. t<6u

( t
n
)
10u

.

Over this range of t, notice that any set U that maps to a set T of cardinality less than 6u will
also map to a set T of cardinality equal to 6u. We therefore obtain an upper bound by only
considering the case where t = 6u:

P[EUA < 6] ≤ ∑
T

s.t. t=6u

(6u
n
)
10u

.

As ∣B∣ = n, there are ( n
6u
) ≤ (ne

6u
)6u ways of choosing this set T of size 6u. Therefore, we can

re-express the summation as

P[EUA < 6] ≤ (
ne

6u
)
6u

(6u
n
)
10u

and the proof follows.

Since the above lemma provides an upper bound on P[EUA < 6] for given UA, we now turn our

attention to union bounding over all such UA such that 1 ≤ u ≤ ∣V ∣
1000

= n
500

.

Lemma 2. For n sufficiently large,

P[∃UA∣EUA < 6] <
1

2
. (3)

Proof. We first claim that

P[∃UA∣EUA < 6] ≤
⌊n/500⌋
∑
u=1

∑
UA

s.t. ∣UA ∣=u

P[EUA < 6]. (4)

Notice that this is precisely the union bound of P[EUA < 6] over all sets UA such that ∣UA∣ = u
for u ≤ n

500
. It therefore produces an upper bound on the probability that there exists at least

one UA with EUA < 6, which is what we seek in Equation 3.
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We next produce a bound for the inner summation in Equation 4 above. Since ∣A∣ = n, there are
(n
u
) ≤ (ne

u
)u subsets UA such that ∣UA∣ = u. From this and the result obtained in Lemma 1, we

combine like terms to find that

∑
UA

s.t. ∣UA ∣=u

P[EUA < 6] ≤ (
ne

u
)
u

(ne
6u
)
6u

(6u
n
)
10u

≤ (6
4e7u3

n3
)
u

With n sufficiently large, we notice that this upper bound approaches 0 as u becomes large. We
verify this is the case by arbitrarily setting n = 10000, taking the derivative with respect to u,
and noting that the expression archives a maximum at u = 1. Therefore for n sufficiently large
we can set u = 1 to obtain

∑
UA

s.t. ∣UA ∣=u

P[EUA < 6] ≤ (
64e7u3

n3
)
u

≤ 64e7

n3
.

Plugging this result in the outer summation of Equation 4, we have

P[∃UA∣EUA < 6] ≤
⌊n/500⌋
∑
u=1

64e7

n3
.

We now rewrite the summation to obtain a strict upper bound. First note that because ⌊ n
500
⌋ <

⌊ n
499
⌋ for n > 0, we can write

⌊n/500⌋
∑
u=1

64e7

n3
<
⌊n/499⌋
∑
u=1

64e7

n3
.

Noting that the expression inside the summation does not depend on u and will run less than or
equal to n

499
times, we have that

⌊n/499⌋
∑
u=1

64e7

n3
≤ n

499
⋅ 6

4e7

n3
.

For n ≥
√

2⋅64e7
499

, then

n

499
⋅ 6

4e7

n3
≤ 1

2
.

We have thus shown for n sufficiently large that

P[∃UA∣EUA < 6] <
1

2
.

Lemma 3. Given a set U = UA ∪UB it holds that

P[∃U ∣EU < 6] ≤ P[∃UA∣EUA < 6] + P[∃UB ∣EUB < 6].

Proof. From G being bipartite, we know the neighborhoods of a vertex in A and a vertex in B
will be disjoint, thus ∣Γ(U)∣ = ∣Γ(UA)∣ + ∣Γ(UB)∣. Using the fact that ∣U ∣ = ∣UA∣ + ∣UB ∣, we then
write that

EU =
∣Γ(U)∣
∣U ∣

= ∣Γ(UA)∣ + ∣Γ(UB)∣
∣UA∣ + ∣UB ∣

= ∣Γ(UA)∣
∣UA∣ + ∣UB ∣

+ ∣Γ(UB)∣
∣UA∣ + ∣UB ∣

≤ ∣Γ(UA)∣
∣UA∣

+ ∣Γ(UB)∣
∣UB ∣

= EUA +EUB

taking the probability of both sides gives

P[EU < 6] ≤ P[EUA +EUB < 6]

which can be rewritten using the union bound to obtain

P[EU < 6] ≤ P[EUA ≤ 6] + P[EUB ≤ 6].

If we proceed to union bound over all such subsets, U,UA, UB in a similar approach used in
Equation 4 of Lemma 2, we have that
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⌊n/500⌋
∑
u=1

∑
U

s.t. ∣UA ∣=u

(P[EU < 6) ≤
⌊n/500⌋
∑
u=1

∑
UA,UB

s.t. ∣UA ∣=∣UB ∣=u

(P[EUA ≤ 6] + P[EUB ≤ 6])

which implies
P[∃U ∣EU < 6] ≤ P[∃UA∣EUA < 6] + P[∃UB ∣EUB < 6].

5 Unique neighbor expansion

Using our construction in Section 3.1 and our proof of expansion in Section 4.2, we now provide
a proof of the unique neighbor expansion property. As described below, this will guarantee that
there will be “many” nodes that are connected by an edge to one and only one node in U .

Theorem 2 (Unique Neighbor Expander). Given a random d-regular multigraph G = (V,E)
which is bipartite on vertex sets A and B with an expansion of λ, then for some constant α with
2λ−α ≥ d it holds for every subset U ⊂ A that ∣Γu(U)∣ ≥ α∣U ∣ where Γu(U) contains the neighbors
of U that have exactly one edge connecting them to a node in U .

Proof. We proceed to show that if graph G is an expander, then it must also be a unique neighbor
expander. More specifically, if there are too many vertices in that are not unique neighbors of
U then the condition that G is d−regular will be violated.

First, let ∣U ∣ = u, and let Γn(U) ⊂ B contain the nodes in B with at least two edges connecting
them to a node in U . Noting that Γu(U) and Γn(U) are disjoint and Γ(U) = Γu(U) ∪ Γu(U),

∣Γ(U)∣ = ∣Γu(U)∣ + ∣Γu(U)∣. (5)

Next, let Φ(U,T ) denote the number of edges between the number of edges between some U ⊂ A
and some set T ⊆ B. From Equation 5 we obtain

Φ(U,Γ(U)) = Φ(U,Γu(U)) +Φ(U,Γn(U)). (6)

Since every vertex in Γu(U) is connected to exactly 1 vertex in U , it follows that Φ(U,Γu(U)) =
∣Γu(U)∣. In a similar approach, from the fact that every vertex in Γn(U) is connected to at least
2 vertices in U , it follows that Φ(U,Γn(U) ≥ 2∣Γn(U)∣. Plugging these two results into Equation
6,

Φ(U,Γ(U)) ≥ ∣Γu(U)∣ + 2∣Γn(U)∣.

From d-regularity it must hold that Φ(Γ(U), T) = ud, therefore

ud ≥ ∣Γu(U)∣ + 2∣Γn(U)∣. (7)

Towards a contradiction, suppose for some set U and constant c > 0 that

∣Γu(U)∣ = αu − c. (8)

By the fact that graph G is an expander, we know that ∣Γ(U)∣ ≥ λu. Plugging this result and
our assumption into Equation 5,

λu = (αu − c) + ∣Γn(U)∣

so
∣Γn(U)∣ = u(λ − α) + c. (9)

Plugging in our results obtained in Equation 8 and 9 into Equation 7 this above expression gives

ud ≥ (αu − c) + 2(λu − αu + c)

so
ud ≥ u(2λ − α) + c.

Using the fact that 2λ − α ≥ d we obtain

ud ≥ ud + c for some c > 0

and the proof follows by way of contradiction.
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6 Transmission among vertices of an expander graph

As previously mentioned in Section 1, expander graphs often arise in network theory. For ex-
ample, consider the scenario in which a node of a graph wishes to broadcast a message to other
nodes, and thus sends the message to all its neighbors, who in turn broadcast the message in the
next round to all their neighbors, and so on. Among other things, one might wonder how quickly
the message reaches at least a certain number of nodes. To answer this question we present the
following theorem.

Theorem 3. Suppose G = (V,E) is a random, d-regular bipartite multigraph as described in
Section 3 with an expansion of λ. Then if a node s broadcasts a messages to its neighbors and
so on, then the message reaches Ω(n) nodes in at most O(logn) rounds.

Proof. We wish to show that there exists constants c1 and c2 such that message reaches at
least c1n nodes in at most c2 logn rounds. To accomplish this, we leverage the the expansion
properties of G.

For a given step i, define the set Mi to contain all nodes that have the message. If we assume that
c1 = 1

500
, then we are restricted to the case where Mi ≤ ∣V ∣

1000
and can thus employ the definition

of expansion in Equation 1 to write that

∣Γ(Mi)∣
∣Mi∣

≥ λ

so
∣Γ(Mi)∣ ≥ λ∣Mi∣.

Since Γ(Mi) contains the vertices with at least one edge to a node in Mi, all nodes in Γ(Mi)
will have the message in round i + 1. Therefore

Mi+1 ≥ λMi

If we assume that a single node s begins with the message at the 0th step, so that ∣M0∣ = 1, then
in step i

∣Mi∣ ≥ λi.

Setting ∣Mi∣ = c1n and solving for i gives

c1n ≥ λi

so
c2 logλ n ≥ i.

Therefore the message reaches at least c1n nodes in at most c2 logn rounds. Or equivalently, the
message reaches Ω(n) nodes in at most O(n) round.

7 Extension: pool testing

While not discussed in the main section of our paper above, we would like to note a third
important application of expander graphs related to virus testing methodologies.

Suppose there is a set A of n people, each of which may have a certain disease. In order to
detect which individuals from A have the virus, we take random groups of d people from A, pool
their biological samples, and run the pooled test. We repeat this process n times in such a way
that every individual is tested exactly d times. However, each pooled test only returns positive
if exactly one person has the disease. If we are given some upper bound on the number of people
in A that have the virus, we might wonder if our method succeeds at detecting the virus.

While we do not provide a formal proof of such success, we speculate the affirmative. First note
that the graph described by the above scenario is d-regular and bipartite on sets A and B each
of cardinality n. Therefore, our results from Section 4.2 and Section 5 apply.

One possible approach is as follows. For a vertex w ∈ B, we say that w “fails” if at least 2 of
the d vertices in A that w is adjacent to have the virus. If we then suppose exactly m people
in A have the disease, then for a fixed m we conjecture that the probability that w fails goes to
0. We then surmise that there may exist a backtracking method to deduce which vertices in A
have the virus, however we leave this task up to future work.
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